2.

(a) Compute the molar-specific volume (or 'molar volume') for a pure Helium ideal gas at room temperature $(T=298 \mathrm{~K})$ and atmospheric pressure. Find the length corresponding to this volume. Will the answer differ if I choose nitrogen or any other ideal gas?
(b) Repeat the above but for a pure Helium van der Waals gas. Is a mole of He in the van der Waals gas larger or smaller than a mole of He in an ideal gas when T and P are fixed? Explain.
(c) Now consider T and v to be variables and consider the ratio of pressures, i.e. Ratio $=\mathrm{P}($ van der Waal $) / \mathrm{P}($ ideal $)$. Is the ratio larger or smaller than 1? Explain.
(d) Suppose that we adopt 5% as representing a significant departure in pressure from an ideal gas. Find the molar volume that makes P (van der Waal) differ from P (ideal) by 5%. What are P (van der Waal) and P (ideal) for this situation? What is the corresponding length? Comment on your result.

