Assignment 8

1. (a) The molar-specific energy equation for a monatomic van der Waals gas is given by

$$
\begin{equation*}
u=\frac{3}{2} R T-a v \tag{1}
\end{equation*}
$$

Show that the molar-specific enthalpy is given by

$$
\begin{equation*}
h=\frac{5}{2} R T+R T \frac{b}{v}-2 \frac{a}{v} \tag{2}
\end{equation*}
$$

where a and b are constants as shown in the van der Waals equation.
(b) It can be shown that the Joule-Thomson coefficient for such a gas is given by

$$
\begin{equation*}
\left.\mu \equiv \frac{\partial T}{\partial P}\right|_{h}=\left(\frac{-1}{c_{P}}\right) \frac{\left[R T v^{3} b-2 a v(v-b)^{2}\right]}{\left[R T v^{3}-2 a(v-b)^{2}\right]} \tag{3}
\end{equation*}
$$

where c_{P} is the molar specific heat at constant pressure. Find an expression for the inversion temperature, $T_{i n v}$, for this gas. The right hand side should include only v and some constants.
(c) Calculate the inversion temperature for N_{2} for a molar volume of $v=$ $1.27 \times 10^{-4} \mathrm{~m}^{3} / \mathrm{mol}$. [Note: $a=0.1408 \mathrm{Jm}^{3} / \mathrm{mol}^{2}$ and $b=3.913 \times 10^{-5}$ $\left.\mathrm{m}^{3} / \mathrm{mol}\right]$
(d) What pressure does the result of part (c) correspond to?
(e) Suppose $b \ll v$. Find a simplified expression for $T_{i n v}$ for that case and re-evaluate it for N_{2}. Is this result similar to the result of part (c) or is it very different? Comment on the result.
2. Do Prob. 5.5 in the text.
3. (This question is a modified version of Prob. 5.14 in the text.)
(a) Expand S in terms of T and V, and expand V in terms of T and P.
(b) Insert $d V$ from the second expansion into the first, let P be constant, and simplify the result.
(c) It can be shown that

$$
\begin{equation*}
C_{V}=\left.T \frac{\partial S}{\partial T}\right|_{V} \quad C_{P}=\left.T \frac{\partial S}{\partial T}\right|_{P} \tag{4}
\end{equation*}
$$

Write the result of part (b) in terms of C_{P} and C_{V} using Eqns. 4 and arrange the result so that only C_{P} is on the left hand side of the equation.
(d) Use a Maxwell relation, the cyclic relation, and the definitions of β and κ to reproduce the result

$$
\begin{equation*}
C_{P}=C_{V}+\frac{T V \beta^{2}}{\kappa} \tag{5}
\end{equation*}
$$

Notice that, for a liquid or solid, this equation provides a simple relation between T and V since all other quantities are likely constants. [Also note that when κ is written without a subscript, it means κ_{T}.]
4. Suppose that the molar-specific Gibbs free energy function is

$$
\begin{equation*}
g=R T \ln \left(\frac{P}{P_{0}}\right)-A P \tag{6}
\end{equation*}
$$

where P is the pressure, P_{0} is a reference pressure, and A is a function which depends only on temperature, T. For the following, express all extensive quantities in molar specific form, express all results in terms of known quantities and constants, and express the results as simply as possible. Find expressions for
(a) the equation of state
(b) the entropy, s
(c) the remaining thermodynamic potentials, h, f, and u
(d) the specific heats, c_{v} and c_{P}
(e) β and κ
(f) the Joule-Thomson coefficient, μ

