PHYSICS 372: Numerical Data \& Unit Conversions

Mass of an atomic mass unit
Mass of the electron
Planck's constant
Boltzmann's constant
Speed of light
Angstrom
Avogadro's number
Gas constant
dry air mean molecular weight
$\mathrm{T}\left(\right.$ in $\left.{ }^{\circ} \mathrm{C}\right)=\mathrm{T}($ in K$)-273$
$1 \mathrm{~atm}=1.013 \mathrm{bar}=1.013 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2}$

PHYSICS 372: Mathematical Expressions
$f=f(x, y)=>d f=\left.\frac{\partial f}{\partial x}\right|_{y} d x+\left.\frac{\partial f}{\partial y}\right|_{x} d y$
Stirling's Approx: $N!\approx N^{N} e^{-N} \sqrt{2 \pi N} \quad \ln (N!) \approx N \ln N-N \quad(N$ large $)$
$\ln (1+x) \approx x \quad(1+a x)^{1 / x} \approx e^{a} \quad(|x| \ll 1)$
Cyclic relation for $\mathrm{P}, \mathrm{V}, \& \mathrm{~T}:\left(\left.\frac{\partial V}{\partial P}\right|_{T}\left(\left.\frac{\partial P}{\partial T}\right|_{V}\left(\left.\frac{\partial T}{\partial V}\right|_{P}=-1\right.\right.\right.$
Mixed partial derivatives: $\frac{\partial^{2} f}{\partial x \partial y}=\frac{\partial^{2} f}{\partial y \partial x}$

PHYSICS 372: Equations

Ideal gas law: $\quad P V=N k T=n R T$
Ideal gas $r m s$ speed: $v_{r m s}=\sqrt{\frac{3 k T}{\mu m_{a m u}}}$ where $\mu \equiv \frac{\langle m\rangle}{m_{a m u}}$ is the mean mol. wt.
Van der Waal's gas: $\quad\left(P+\frac{a}{v^{2}}\right)(v-b)=R T \quad$ where $\quad v=V / m$
$\gamma=\frac{f+2}{f} \quad$ Quadratic degrees of freedom: $U=N \frac{f}{2} k T$
Volume expansion coefficient: $\beta \equiv \frac{1}{V}\left(\left.\frac{\partial V}{\partial T}\right|_{P} \quad\right.$ Isothermal compressability: $\kappa \equiv-\frac{1}{V}\left(\left.\frac{\partial V}{\partial P}\right|_{T}\right.$
Sound speed: $c_{s}=\sqrt{\frac{B_{s}}{\rho}}$ where $\frac{B_{s}}{\gamma}=B=\frac{1}{\kappa}=\frac{1}{\gamma \kappa_{s}}$ (subscripts, s, meaning adiabatic)

First law: $\Delta U=Q+W \quad d U=d Q+d W$
Expansive/compressive work: $d W=-P d V$
Ideal gas adiabatic expansion/compression: $V T^{f / 2}=\mathrm{const} \quad P V^{\gamma}=\mathrm{const}$
Enthalpy: $H=U+P V \quad$ Latent heat: $L=\frac{Q}{m}$
Heat Capacities: $C_{V} \equiv\left(\left.\frac{d Q}{d T}\right|_{V}=\left(\left.\frac{\partial U}{\partial T}\right|_{V}\right.\right.$
$C_{P} \equiv\left(\left.\frac{d Q}{d T}\right|_{P}=\left(\left.\frac{\partial H}{\partial T}\right|_{P}=C_{V}+\left[\left(\left.\frac{d U}{d V}\right|_{T}+P\right] V \beta=C_{V}+\frac{\beta^{2} T V}{\kappa}\right.\right.\right.$
Two-state system: $\quad \Omega(N, n)=\frac{N!}{n!(N-n)!} \quad(N>n)$
Einstein solid: $\quad \Omega(N, q)=\frac{(q+N-1)!}{q!(N-1)!} \quad(N$ the \# of oscillators, $q \epsilon=U)$

$$
\Omega=\left(\frac{e N}{q}\right)^{q} \quad(q \ll N), \quad \Omega=\left(\frac{e q}{N}\right)^{N} \quad(q \gg N)
$$

Monatomic ideal gas: $\Omega=f(N) V^{N} U^{3 N / 2}$
Entropy: $S=k \ln \Omega$
Sackur-Tetrode Eqn: $\quad S=N k\left\{\ln \left[\frac{V}{N}\left(\frac{4 \pi m U}{3 N h^{2}}\right)^{3 / 2}\right]+\frac{5}{2}\right\}$
$\frac{1}{T}=\left(\left.\frac{\partial S}{\partial U}\right|_{N, V} \quad d S=\frac{d Q}{T} \quad d S=\frac{C_{V}}{T} d T(\mathrm{~V}\right.$ const $)$, or $d S=\frac{C_{P}}{T} d T$ (P const)
$T d S$ Equations:

$$
\begin{aligned}
& T d S=C_{V} d T+T \frac{\beta}{\kappa} d V \\
& T d S=C_{P} d T-\beta V T d P \\
& T d S=\frac{1}{V} \frac{C_{P}}{\beta} d V+\kappa \frac{C_{V}}{\beta} d P
\end{aligned}
$$

Thermodynamic Potentials:

$$
G=U-T S+P V \quad H=U+P V \quad F=U-T S
$$

Thermodynamic Identities:
(recall that each can be expanded in a fashion as shown in the first case for $d U$)

$$
\begin{aligned}
d U= & T d S-P d V+\mu d N \\
& =\left(\left.\frac{\partial U}{\partial S}\right|_{(V, N)} d S+\left(\left.\frac{\partial U}{\partial V}\right|_{(S, N)} d V+\left(\left.\frac{\partial U}{\partial N}\right|_{(S, V)} d N\right.\right.\right. \\
d H= & T d S+V d P+\mu d N \\
d F= & -P d V-S d T+\mu d N \\
d G= & V d P-S d T+\mu d N \quad \text { where } \mu \text { is the chemical potential }
\end{aligned}
$$

For an ideal gas, $\mu(T, P)=\mu^{0}(T)+k T \ln \left(\frac{P}{P^{0}}\right)$
Clausius-Clapeyron: $\frac{d P}{d T}=\frac{\Delta S}{\Delta V}=\frac{L}{T \Delta V} \quad$ Joule-Kelvin coefficient: $\mu=\left(\left.\frac{\partial T}{\partial P}\right|_{H}\right.$ Maxwell Relations:
$\left(\left.\frac{\partial T}{\partial V}\right|_{S}=-\left(\left.\frac{\partial P}{\partial S}\right|_{V} \quad\left(\left.\frac{\partial T}{\partial P}\right|_{S}=\left(\left.\frac{\partial V}{\partial S}\right|_{P}\right.\right.\right.\right.$
$\left(\left.\frac{\partial S}{\partial V}\right|_{T}=\left(\left.\frac{\partial P}{\partial T}\right|_{V} \quad\left(\left.\frac{\partial S}{\partial P}\right|_{T}=-\left(\left.\frac{\partial V}{\partial T}\right|_{P}\right.\right.\right.\right.$

Engines/Refrigerators:
efficiency, e, or coefficient of performance, $c=$ benefit/cost
Heat engine, $e=\frac{W}{Q_{h}}$, Rankine: $e=1-\frac{H_{4}-H_{1}}{H_{3}-H_{1}}$
Refrigerator, $c=\frac{Q_{c}}{W}$, Rankine: $c=\frac{H_{1}-H_{3}}{H_{2}-H_{1}}$, Heat pump: $c=\frac{Q_{h}}{W}$

Boltzmann factor: $e^{-E(s) / k T} \quad$ Probability: $P(s)=\frac{1}{Z} e^{-E(s) / k T}$
Partition function: $Z=\Sigma_{s} e^{-E(s) / k T} \quad F=-k T \ln Z$
$\bar{E}=-\frac{\partial(\ln Z)}{\partial \beta} \quad \overline{E^{2}}=\frac{1}{Z} \frac{\partial Z^{2}}{\partial \beta^{2}} \quad\left(\mathrm{~V}\right.$ constant) $\quad \beta=\frac{1}{k T}$
Maxwell-Boltzmann velocity distribution:
$N(v) d v=N\left(\frac{m}{2 \pi k T}\right)^{3 / 2} 4 \pi v^{2} e^{-m v^{2} /(2 k T)} d v$
$Z=\frac{Z_{1}^{N}}{N!}$ (ideal gas)
Partition function of ideal gas: $\ln (Z)=N\left[\ln (V)+\ln \left(Z_{\text {int }}\right)-\ln (N)-\ln \left(v_{Q}\right)+1\right]$ quantum volume: $v_{Q}=\left(\frac{h^{2}}{2 \pi m k T}\right)^{3 / 2}$

Gibbs factor: $e^{-[E(s)-\mu N(s)] / k T}$
Grand partition function: $\mathcal{Z}=\Sigma_{s} e^{-[E(s)-\mu N(s)] / k T}$
$\bar{N}=\frac{k T}{\mathcal{Z}} \frac{\partial \mathcal{Z}}{\partial \mu} \quad \overline{N^{2}}=\frac{(k T)^{2}}{\mathcal{Z}} \frac{\partial^{\mathcal{Z}}}{\partial \mu^{2}}$
$\bar{n}=\Sigma n P(n)$
$\bar{n}=\frac{1}{e^{(\epsilon-\mu) / k T}}$ (distinguishable particles)
$\bar{n}=\frac{1}{e^{(\epsilon-\mu) / k T}+1} \quad$ Fermi energy, $\epsilon_{F}=\frac{h^{2}}{8 m}\left(\frac{3 N}{\pi V}\right)^{2 / 3}$
(Fermions)
$\bar{n}=\frac{1}{e^{(\epsilon-\mu) / k T}-1} \quad$ (Bosons)

