
The Gay-Lussac-Joule Experiment

Thus far, we have only stated that, for objects for which there are only
quadratic degrees of freedom, we can write

U =
f

2
NkT (1)

That is, the internal thermal energy is a function of temperature only (U =
U(T )). How do we know this? The equation relates macroscopic and mi-
croscopic quantities, so it is possible to approach the issue from ‘either end’.
However, in this development, I wish to focus on the macroscopic, i.e. what
is actually measured in the lab? A famous approach is the Gay-Lussac-Joule

Experiment (see picture).
In general, we can write U = U(T, V, P ) but, since an equation of state

should exist (i.e. there exists P = P (V, T )), then we only need two variables
to completely specify the energy equation, once the relevant equation of state
is used. We will choose U = U(T, V ), i.e. we start by assuming that U is
indeed a function of both T and V and go from there. The steps would be as
follows:

1. Fill side A with a gas, leaving side B evacuated.
2. Allow the gas to reach thermal equilibrium with the surrounding liquid
bath. The bath is insulated so as not to allow any heat transport with the
exterior. Once equilibrium is achieved, the temperature, T , (of both bath
and gas) is measured and known.
3. Open the valve and let the gas expand (free expansion) so that it finally
occupies both sides. No work is done on the gas, i.e. W = −

∫

PdV = 0
because P = 0.
4. Allow the gas in the new configuration to reach thermal equilibrium with
the bath again. If there has been a change in temperature of the gas, then
there should be a flow of heat between the gas and the surrounding bath.
The result should be a change in temperature of the bath which can then be
measured.
5. Measure the temperature of the bath (which is the same as the gas). The
experimental result: there is no change in temperature1. Since T remains

1Actually, the first time this experiment was run, the temperature change was simply

too small to be measurable.
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constant, there must have been no exchange of heat between the gas and
bath; therefore Q = 0.
6. Since both W = 0 (point 3 above) and Q = 0 (point 5) then by the first
law of thermodynamics, dU = 0 as well, implying that U = constant. We
can now conclude that ∂T

∂V
|U = 0.

7. From our circular identity:
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8. We know that CV has a value, so if ∂T
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= 0 as we found in point 6

above, then it must also be true that ∂U
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9. We started by assuming that U could be completely described by U(T, V )
so we can now expand the derivative,
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However, we just showed that the first coefficient is zero, so the result is

dU =
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dT = CV dT (6)

An integration over definite limits would give, U = CV (T − T0) + U0. That
is, U = U(T ) only (not V). At T0 = 0, there is no internal energy so U0 = 0
in which case U = CV T which is Eqn. 1 with CV = N f

2
k.

Of course, this experiment applies only to an ideal gas but it nicely illus-
trates how Eqn. 1 can be determined for that circumstance.
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